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Cosmological Model with Heat Flow

Ashfaque H. Bokhari'?

Received December 17, 1991

An earlier work on a generalized Robertson-Walker-Friedmann metric with
radial heat flow is extended to any arbitrary motion.

In an earlier work (Bokhari, n.d.) we considered a generalization of the
space-time metric due to Glass (1979) and Bergmann (1975, 1981) to write

ds’=A%(t,r) df — B*(t, N[(1 —kr*/RY) ™" dr*+r* dQ? 6))

where k corresponds to the three Friedmann cosmological models when
A=1 in equation (1) and

dQ’=d9*+sin’ § d¢® 0))
The stress-energy-momentum tensor associated with the above metric is
T =(p+pyud —pg™+qu’+ qu’ 3)

where p, p, u“, and ¢°, respectively, represent mass-energy density, isotropic
pressure, unit timelike 4-velocity vector defined by #°=4"'54, and the radial
component of heat flow. We write the Einstein field equations in the form

Xab: Rab= 8”(Tab'~ %gabT) (4)

where gravitational units have been used to write . In the earlier work we
bad assumed B =0. However, we now consider any arbitrary motion. Thus,
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B #0. In this case, solving equations (4) for Xy, yields the radial component
of heat flow

q°=2(1—kr’/R?)/x B*[B /AB]'5] (5)

where dot and prime, respectively, represent derivatives with respect to tem-
poral and radial coordinates. The model given above may evolve in any
arbitrary way. To have a physically plausible model, we require that it must
meet the pressure isotropy condition given by

T\~38{T=T5~383T ©)
yield a second-order partial differential equation
[A"/A+ B"/B—~(2B'/B+1/r)(A'/A+ B'/B){(1—kr*/R?)
+ (B /B)kr/R*=0 )

We present solutions of the above equation relevant only for the cosmolog-
ical context. Thus, we assume 4 =1 in equation (1). This reduces equation
(7) to an equation in partial derivatives of B only. This equation can then
be easily solved to obtain

B '=aa(n)[1+y(1)/d] ®

where a=(1—kr*/R**?R*/3k, y(t)= B(£)/a(t), and a(t) and B(¢) are inte-
gration constants. Note that for K= 0 the solutions represented by equation
(8) do not remain valid. Thus, in that case the solutions are sought from the
beginning to give

B~'=B®[1 - y()r*] %)
where y(t) = a(t)/B(1).

Corresponding to equation (8) and 4 =1, the expression for heat flow
[assuming B =const. in equation (8)] becomes

q°=a/8x[2r(1 — kr’/R?*)**)(0a /81) 65 (10)

which is the same condition as given in (1). The energy density and pressure,
respectively, for these models are

p=(1/87)B *{3(B'Y’— B }[2BB" — (B')*+4BB')(1—kr*/R?)
+(5B'/2B)kr/R*} (11)
and
p=((1/8n)1/B*{(1—kr’/R*)B'/B
+[8B'— (3B'r+4B)kr/R*]1 /2Br
—2(B'/B) -3(B /B)’} (12)
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The conservation laws are identically satisfied. These laws corresponding to
T'".,=0 yield
d(B’q°89) /0t +o[(1 —kr*/R*)p+ p]/or=0 (13)

which defines a phenomenological temperature. There also arises an interest-
ing equation defining the radial rate of change of p by

dp/or=3/2 0B*/0t ¢"65+kr/R? (14)
The other conservation equation corresponding to 7%.,=0 yields

ol(—8)'*p1/0t+ 0l(—g)'*q"57)/or+p 3l(—g)'1/01=0 (15)

which again remains unchanged as in (1). As in Bokhari (n.d.), the method
used to derive a hyperbolic equation of heat conduction is not applicable
here either since the term g,uu®,,+u"u’q,., vanishes identically due to the
* form of the metric we have used.
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